
Mapping Nanoparticle Properties to Toxicity

Jeremy Gernand and Elizabeth Casman (CMU)

Regression Tree Analysis was used to perform a meta-analysis of 8 rodent inhalational toxicology studies of carbon nanotubes (CNT) to identify and rank the important predictive variables.

Regression Tree for Total Cell Count (TCC) in BAL Fluid

Major findings:

- Different CNT properties were associated with different toxicological endpoints measured in BAL fluid (e.g., immune response, inflammation, cell damage).
- For Total Cell Count, there are two size-related responses, the more severe associated with high doses of short CNT fragments, the other one associated with large aggregate sizes > 2μm.
- For Total Protein concentration, the impurities in the CNTs are the most important variables.
- The mode of exposure (instillation vs. inhalation) has very little effect on toxicity outcomes relative to the other variables like dose and CNT geometry.
- The most information-rich measure of dose for CNTs is by mass, however limitations in particle count and surface area measurement methods may explain this.
- Mouse and rat studies are comparable for outcomes measured on a relative-change-from-control basis.

