Theme 2: Cellular and Organismal Responses

Cellular and Organismal Responses research examines the impact of nanomaterials on organisms with respect to nanomaterials bioavailability, developmental impacts and toxicity. Bioavailability and toxicity testing serve a vital screening function, allowing us to examine a broad range of nanomaterials and build a database for calibrating and validating structure-activity models. Theme 2 studies 1) develop assays to rapidly screen for nanomaterial properties that may invoke toxic responses, and 2) identifies mechanisms acting at the molecular scale that explain the observed organismal and ecosystem responses that, taken in conjunction with activities in Theme 1, lay the groundwork for interpreting the ecosystem responses in Theme 3.

Selected Publications

L. L. Maurer, Luz, A. L. , and Meyer, J. N. , Detection of mitochondrial toxicity of environmental pollutants using Caenorhabditis elegans, in Mitochondrial Dysfunction by Drugs and Environmental Toxicants, J. A. Dykens and Will, Y. , Eds. Wiley, 2018, pp. 655-689.
C. Chen, Tsyusko, O. V. , Jr, D. H. McNear, Judy, J. , Lewis, R. W. , and Unrine, J. M. , Effects of biosolids from a wastewater treatment plant receiving manufactured nanomaterials on Medicago truncatula and associated soil microbial communities at low nanomaterial concentrations, Science of the Total EnvironmentScience of The Total Environment, vol. 609, pp. 799-806, 2017.
E. Lahive, Matzke, M. , Durenkamp, M. , Lawlor, A. J. , Thacker, S. A. , Pereira, M. G. , Spurgeon, D. J. , Unrine, J. M. , Svendsen, C. , and Lofts, S. , Sewage sludge treated with metal nanomaterials inhibits earthworm reproduction more strongly than sludge treated with metal metals in bulk/salt forms, Environmental Science: NanoEnvironmental Science: Nano, vol. 4, pp. 78-88, 2017.
D. A. Arndt, Oostveen, E. K. , Triplett, J. , D Butterfield, A. , Tsyusko, O. V. , Collin, B. , Starnes, D. L. , Cai, J. , Klein, J. B. , and Nass, R. , The role of charge in the toxicity of polymer-coated cerium oxide nanomaterials to Caenorhabditis elegans, Comparative Biochemistry and Physiology Part C: Toxicology & PharmacologyComparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, vol. 201, pp. 1-10, 2017.
R. W. Lewis, Unrine, J. , Bertsch, P. M. , and Jr, D. H. McNear, Silver engineered nanomaterials and ions elicit species-specific O2 consumption responses in plant growth promoting rhizobacteria, BiointerphasesBiointerphases, vol. 12, p. 05G604, 2017.
E. Spielman-Sun, Lombi, E. , Donner, E. , Howard, D. L. , Unrine, J. M. , and Lowry, G. V. , Impact of surface charge on cerium oxide nanoparticle uptake and translocation by wheat (Triticum aestivum), Environmental Science & TechnologyEnvironmental Science & Technology, vol. 51, pp. 7361-7368, 2017.
C. Jiang, Castellon, B. T. , Matson, C. W. , Aiken, G. R. , and Hsu-Kim, H. , Relative contributions of copper oxide nanoparticles and dissolved copper to Cu uptake kinetics of Gulf killifish (Fundulus grandis) embryos, Environmental Science & TechnologyEnvironmental Science & Technology, vol. 51, no. 3, pp. 1395-1404, 2017.
J. N. Meyer, Simon, A. H. , Umakanth, K. , and Xang, Y. , Silver nanoparticles are in general more toxic to C. elegans than gold, copper, iron, titanium dioxide, zinc oxide, cerium oxide, and carbon-based nanoparticles, Worm Breeder's GazetteWorm Breeder's Gazette, 2017.
L. L. Maurer, Jiang, C. , Hsu-Kim, H. , and Meyer, J. N. , Analysis of mitochondrial sodium, magnesium, calcium, manganese, and iron in wild-type C. elegans, Worm Breeder's GazetteWorm Breeder's Gazette, 2017.
W. Dong, Liu, J. , Wei, L. , Jingfeng, Y. , Chernick, M. , and Hinton, D. E. , Developmental toxicity from exposure to various forms of mercury compounds in medaka fish (Oryzias latipes) embryos, PeerJPeerJPeerJ, vol. 4, p. e2282, 2016.