A risk forecasting process for nanostructured materials, and nanomanufacturing

TitleA risk forecasting process for nanostructured materials, and nanomanufacturing
Publication TypeJournal Article
Year of Publication2011
AuthorsWiesner MR, Bottero J-Y
JournalComptes Rendus Physique
Volume12
Pagination659-668
Date PublishedSep
ISBN Number1631-0705
Accession NumberWOS:000295436600007
Abstract

Nanomaterials exhibit novel properties that enable new applications ranging from molecular electronics to energy production. Proactive consideration of the potential impacts on human health and the environment resulting from nanomaterial production and use requires methods for forecasting risk associated with of these novel materials. However, the potential variety of nanomaterials is virtually infinite and a case-by-case analysis of the risks these materials may pose is not possible. The challenge of forecasting risk for a broad number of materials is further complicated by large degrees of uncertainty concerning production amounts, the characteristics and uses of these materials, exposure pathways, and a scarcity of data concerning the relationship between nanomaterial characteristics and their effects on organisms and ecosystems. A traditional risk assessment on nanomaterials is therefore not possible at this time. In its place, an evolving process is needed for analyzing the risks associated with emerging nanomaterials-related industries. In this communication, we propose that such a process should include the following six key features: (1) the ability to generate forecasts and associated levels of uncertainty for questions of immediate concern; (2) a consideration of all pertinent sources of nanomaterials; (3) an inclusive consideration of the impacts of activities stemming from nanomaterial use and production that extends beyond the boundaries of toxicology and include full life cycle impacts; (4) the ability to adapt and update risk forecasts as new information becomes available; (5) feedback to improve information gathering; and (6) feedback to improve nanomaterial design. Feature #6 implies that the potential risks of nanomaterials must ultimately be determined as a function of fundamental, quantifiable properties of nanomaterials, so that when these properties are observed in a new material, they can be recognized as indicators of risk. Thus, the required risk assessment process for nanomaterials addresses needs that span from urgent, short-term questions dealing with nanomaterials currently in commerce, to longer-term issues that will require basic research and advances in theory. In the following sections we outline issues surrounding each of these six features and discuss. (C) 2011 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.

URLhttp://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=ResearchSoft&SrcApp=EndNote&DestLinkType=FullRecord&DestApp=WOS&KeyUT=WOS:000295436600007